در ضمن دشوارى هاى هندسى، خود ناشى از مسئله هایى بوده است که در اخترشناسى با آن روبه رو مى شده اند و بیشتر جنبه محاسبه اى داشته اند. در اخترشناسى اغلب به مسئله هایى بر مى خوریم که براى حل آنها به مثلثات و دستورهاى آن نیازمندیم. ساده ترین این مسئله ها، پیدا کردن یک کمان دایره (بر حسب درجه) است، وقتى که شعاع دایره و طول وتر این کمان معلوم باشد یا برعکس، پیدا کردن طول وترى که طول شعاع دایره و اندازه کمان معلوم باشد. مى دانید سینوس یک کمان از لحاظ قدر مطلق برابر با نصف طول وتر دو برابر آن کمان است. همین تعریف ساده اساس رابطه بین کمان ها و وترها را در دایره تشکیل مى دهد و مثلثات هم از همین جا شروع شد. کهن ترین جدولى که به ما رسیده است و در آن طول وترهاى برخى کمان ها داده شده است متعلق به هیپارک، اخترشناس سده دوم میلادى است و شاید بتوان تنظیم این جدول را نخستین گام در راه پیدایش مثلثات دانست. منه لائوس ریاضیدان و بطلمیوس اخترشناس (هر دو در سده دوم میلادى) نیز در این زمینه نوشته هایى از خود باقى گذاشته اند. ولى همه کارهاى ریاضیدانان و اخترشناسان یونانى در درون هندسه انجام گرفت و هرگز به مفهوم هاى اصلى مثلثات نرسیدند. نخستین گام اصلى به وسیله آریابهاتا، ریاضیدان هندى سده پنجم میلادى برداشته شد که در واقع تعریفى براى نیم وتر یک کمان _یعنى همان سینوس- داد. از این به بعد به تقریب همه کارهاى مربوط به شکل گیرى مثلثات (چه در روى صفحه و چه در روى کره) به وسیله دانشمندان ایرانى انجام گرفت. خوارزمى نخستین جدول هاى سینوسى را تنظیم کرد و پس از او همه ریاضیدانان ایرانى گام هایى در جهت تکمیل این جدول ها و گسترش مفهوم هاى مثلثاتى برداشتند. مروزى جدول سینوس ها را تقریبا ۳۰ درجه به ۳۰ درجه تنظیم کرد و براى نخستین بار به دلیل نیازهاى اخترشناسى مفهوم تانژانت را تعریف کرد. جدى ترین تلاش ها به وسیله ابوریحان بیرونى و ابوالوفاى بوزجانى انجام گرفت که توانستند پیچیده ترین دستورهاى مثلثاتى را پیدا کنند و جدول هاى سینوسى و تانژانتى را با دقت بیشترى تنظیم کنند. ابوالوفا با روش جالبى به یارى نابرابرى ها توانست مقدار سینوس کمان ۳۰ دقیقه را پیدا کند و سرانجام خواجه نصیرالدین طوسى با جمع بندى کارهاى دانشمندان ایرانى پیش از خود نخستین کتاب مستقل مثلثات را نوشت. بعد از طوسى، جمشید کاشانى ریاضیدان ایرانى زمان تیموریان با استفاده از روش زیبایى که براى حل معادله درجه سوم پیدا کرده بود، توانست راهى براى محاسبه سینوس کمان یک درجه با هر دقت دلخواه پیدا کند. پیشرفت بعدى دانش مثلثات از سده پانزدهم میلادى و در اروپاى غربى انجام گرفت. یک نمونه از مواردى که ایرانى بودن این دانش را تا حدودى نشان مى دهد از این قرار است: ریاضیدانان ایرانى از واژه «جیب» (واژه عربى به معنى «گریبان») براى سینوس و از واژه «جیب تمام» براى کسینوس استفاده مى کردند. وقتى نوشته هاى ریاضیدانان ایرانى به ویژه خوارزمى به زبان لاتین و زبان هاى اروپایى ترجمه شد، معناى واژه «جیب» را در زبان خود به جاى آن گذاشتند: سینوس. این واژه در زبان فرانسوى همان معناى جیب عربى را دارد. نخستین ترجمه از نوشته هاى ریاضیدانان ایرانى که در آن صحبت از نسبت هاى مثلثاتى شده است، ترجمه اى بود که در سده دوازدهم میلادى به وسیله «گرادوس کره مونه سیس» ایتالیایى از عربى به لاتینى انجام گرفت و در آن واژه سینوس را به کار برد. اما درباره ریشه واژه «جیب» دو دیدگاه وجود دارد: «جیا» در زبان سانسکریت به معناى وتر و گاهى «نیم وتر» است. نخستین کتابى که به وسیله فزازى (یک ریاضیدان ایرانى) به دستور منصور خلیفه عباسى به زبان عربى ترجمه شد، کتابى از نوشته هاى دانشمندان هندى درباره اخترشناسى بود. مترجم براى حرمت گذاشتن به نویسندگان کتاب، «جیا» را تغییر نمى دهد و تنها براى اینکه در عربى بى معنا نباشد، آن را به صورت «جیب» در مى آورد. دیدگاه دوم که منطقى تر به نظر مى آید این است که در ترجمه از واژه فارسى «جیپ»- بر وزن سیب- استفاده شد که به معنى «تکه چوب عمود» یا «دیرک» است. نسخه نویسان بعدى که فارسى را فراموش کرده بودند و معناى «جیپ» را نمى دانستند، آن را «جیب» خواندند که در عربى معنایى داشته باشد.